9k^2+12k+4=20

Simple and best practice solution for 9k^2+12k+4=20 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 9k^2+12k+4=20 equation:


Simplifying
9k2 + 12k + 4 = 20

Reorder the terms:
4 + 12k + 9k2 = 20

Solving
4 + 12k + 9k2 = 20

Solving for variable 'k'.

Reorder the terms:
4 + -20 + 12k + 9k2 = 20 + -20

Combine like terms: 4 + -20 = -16
-16 + 12k + 9k2 = 20 + -20

Combine like terms: 20 + -20 = 0
-16 + 12k + 9k2 = 0

Begin completing the square.  Divide all terms by
9 the coefficient of the squared term: 

Divide each side by '9'.
-1.777777778 + 1.333333333k + k2 = 0

Move the constant term to the right:

Add '1.777777778' to each side of the equation.
-1.777777778 + 1.333333333k + 1.777777778 + k2 = 0 + 1.777777778

Reorder the terms:
-1.777777778 + 1.777777778 + 1.333333333k + k2 = 0 + 1.777777778

Combine like terms: -1.777777778 + 1.777777778 = 0.000000000
0.000000000 + 1.333333333k + k2 = 0 + 1.777777778
1.333333333k + k2 = 0 + 1.777777778

Combine like terms: 0 + 1.777777778 = 1.777777778
1.333333333k + k2 = 1.777777778

The k term is 1.333333333k.  Take half its coefficient (0.6666666665).
Square it (0.4444444442) and add it to both sides.

Add '0.4444444442' to each side of the equation.
1.333333333k + 0.4444444442 + k2 = 1.777777778 + 0.4444444442

Reorder the terms:
0.4444444442 + 1.333333333k + k2 = 1.777777778 + 0.4444444442

Combine like terms: 1.777777778 + 0.4444444442 = 2.2222222222
0.4444444442 + 1.333333333k + k2 = 2.2222222222

Factor a perfect square on the left side:
(k + 0.6666666665)(k + 0.6666666665) = 2.2222222222

Calculate the square root of the right side: 1.490711985

Break this problem into two subproblems by setting 
(k + 0.6666666665) equal to 1.490711985 and -1.490711985.

Subproblem 1

k + 0.6666666665 = 1.490711985 Simplifying k + 0.6666666665 = 1.490711985 Reorder the terms: 0.6666666665 + k = 1.490711985 Solving 0.6666666665 + k = 1.490711985 Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Add '-0.6666666665' to each side of the equation. 0.6666666665 + -0.6666666665 + k = 1.490711985 + -0.6666666665 Combine like terms: 0.6666666665 + -0.6666666665 = 0.0000000000 0.0000000000 + k = 1.490711985 + -0.6666666665 k = 1.490711985 + -0.6666666665 Combine like terms: 1.490711985 + -0.6666666665 = 0.8240453185 k = 0.8240453185 Simplifying k = 0.8240453185

Subproblem 2

k + 0.6666666665 = -1.490711985 Simplifying k + 0.6666666665 = -1.490711985 Reorder the terms: 0.6666666665 + k = -1.490711985 Solving 0.6666666665 + k = -1.490711985 Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Add '-0.6666666665' to each side of the equation. 0.6666666665 + -0.6666666665 + k = -1.490711985 + -0.6666666665 Combine like terms: 0.6666666665 + -0.6666666665 = 0.0000000000 0.0000000000 + k = -1.490711985 + -0.6666666665 k = -1.490711985 + -0.6666666665 Combine like terms: -1.490711985 + -0.6666666665 = -2.1573786515 k = -2.1573786515 Simplifying k = -2.1573786515

Solution

The solution to the problem is based on the solutions from the subproblems. k = {0.8240453185, -2.1573786515}

See similar equations:

| -5(1-8p)-7=-292 | | 2s+[-4s]= | | 2/3(-15-4) | | 9/5=n/12 | | 16x+10=-3 | | 8a-8=28+6a | | 1/2* | | 6p+22=19 | | 6(3x-4)=-168 | | -7(1-5x)=-182 | | 6(5x-7)=-19 | | -4(8+y)=90 | | 10-2r=3(5r-8) | | 7(x-6)=-2x+21 | | n+9=5*4 | | 4r+14-r-6= | | 3x=180-(2x+10) | | 2(83)-7x=x+16 | | 6(r+6)=18 | | 180-3x=(2x+10) | | 6(x-4)=3(x-4) | | 16k+21=-5f+48 | | 3x-5+2x+4=9 | | 2.5x+25=3 | | 2(3x-1)=4x+9 | | 2x+12=3x-1-15 | | 8(5+5k)=-160 | | 41-g=42 | | y-1=8/5(x-11) | | 32x=15x | | 3x+25=2.5 | | 8x+7=31-x |

Equations solver categories